首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431985篇
  免费   38416篇
  国内免费   22117篇
电工技术   28035篇
技术理论   45篇
综合类   34572篇
化学工业   67350篇
金属工艺   26684篇
机械仪表   28313篇
建筑科学   33558篇
矿业工程   15561篇
能源动力   11751篇
轻工业   32485篇
水利工程   9382篇
石油天然气   26201篇
武器工业   4244篇
无线电   46273篇
一般工业技术   45398篇
冶金工业   21130篇
原子能技术   5085篇
自动化技术   56451篇
  2024年   831篇
  2023年   6568篇
  2022年   11566篇
  2021年   17358篇
  2020年   13218篇
  2019年   10459篇
  2018年   11860篇
  2017年   13340篇
  2016年   12109篇
  2015年   17516篇
  2014年   21908篇
  2013年   26225篇
  2012年   29724篇
  2011年   32443篇
  2010年   29119篇
  2009年   27566篇
  2008年   27334篇
  2007年   26165篇
  2006年   25557篇
  2005年   21992篇
  2004年   15191篇
  2003年   12847篇
  2002年   11867篇
  2001年   10556篇
  2000年   10127篇
  1999年   9761篇
  1998年   7199篇
  1997年   6126篇
  1996年   5792篇
  1995年   4820篇
  1994年   3887篇
  1993年   2646篇
  1992年   2099篇
  1991年   1586篇
  1990年   1249篇
  1989年   1005篇
  1988年   835篇
  1987年   500篇
  1986年   405篇
  1985年   247篇
  1984年   199篇
  1983年   148篇
  1982年   130篇
  1981年   86篇
  1980年   116篇
  1979年   56篇
  1977年   23篇
  1976年   28篇
  1959年   22篇
  1951年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A series of tetrathiophene-based fully non-fused ring acceptors (4T-1, 4T-2, 4T-3, and 4T-4), which can be paired with the star donor polymer PBDB-T to fabricate highly efficient organic solar cells are developed. Tailoring the size of lateral chains can tune the solubility and packing mode of acceptor molecules in neat and blend films. It is found that the incorporation of 2-ethylhexyl chains can effectively change the compatibility with the donor polymer PBDB-T, and an encouraging power conversion efficiency of 10.15% is accomplished by 4T-3-based organic solar cells. It also presents good compatibility with the other polymer donor and an even higher power conversion efficiency (PCE) of 12.04% is achieved based on D18:4T-3 blend, which is the champion PCE for the fully non-fused acceptors. Importantly, these inexpensive tetrathiophene fully non-fused ring acceptors provide cost-effective photovoltaic performance. The results demonstrate a high photovoltaic performance from synthetically inexpensive materials could be achieved by the rational design of non-fused ring acceptor molecules.  相似文献   
42.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
43.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
44.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
45.
张立红  肖晓萍  李飞  崔开放 《锻压技术》2021,46(2):136-141,153
采用有限元模拟和实验研究了挤压钛合金弯曲管件。通过实验验证了工件的形状和尺寸精度,并通过有限元模拟分析了工艺参数对挤出过程中变形体的平均压应力分布情况和挤出弯管件的曲率半径的影响规律。结果表明:有限元模拟中,弯管件的曲率半径误差为6.03%,弯管直径误差为3.82%;在靠近定径带处,平均压应力呈非均匀分布;在焊合腔内,靠近细分流孔区域的平均压应力小于靠近粗分流孔区域的平均压应力,平均压应力的大小顺序在通过粗、细分流孔前后相反;在模具结构固定不变时,弯管件的曲率半径随挤压速度的减小而增大,不随挤压温度的变化而变化。  相似文献   
46.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
47.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
48.
49.
High purity AlN fiber is a promising thermal conductive material. In this work, AlN fibers were prepared using solution blow spinning followed by nitridation under N2 or NH3 atmosphere. Soluble polymer, such as polyaluminoxane, and allyl-functional novolac resin were adopted as raw materials to form homogeneous distribution of Al2O3 and C nanoparticles within the fibers, which could inhibit the growth of alumina crystal and promote their nitridation process. The effect of nitriding atmosphere on the fiber morphology was investigated. XRD results showed that complete nitridation was achieved at 1300 °C in the NH3 or at 1500 °C in the N2 atmosphere. Hollowed fiber structure was observed when fiber was nitrided in N2 at high temperature, which was caused by gaseous Al gas diffusion, and this phenomenon was eliminated in NH3 atmosphere. The nitridation mechanisms in different atmosphere were analyzed in detail. It was demonstrated that the nitridation of Al2O3 fibers in the NH3 atmosphere offered the favored AlN morphology and chemical quality. Flexible AlN fiber with O content of 0.7 wt% was achieved after nitriding in NH3 at 1400 °C. The high quality AlN can be used in thermal conductive composite materials.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号